The hyperfine field in iron is due to the non-vanishing electron spin density on the iron nucleus. The charge (electron) density on the nucleus is caused predominantly by the \(s \)-like electrons belonging either to the atomic core or to the conduction band. A systematic investigation has been performed by means of the room temperature Mössbauer spectroscopy on \(^{57}\text{Fe} \) \((14.41 - \text{keV} \) transition) for the following impurities: \(X = \text{Ga, Nb, Mo, Ru, Rh, Pd, Os, Ir, Au} \). It has been found that impurities being further away than a third or in some cases as the second neighbor do not contribute directly to the charge and spin perturbation. On the other hand, they have usually some minor effect on the average charge and spin density. Generally, the perturbation to either charge or spin density has some oscillatory character versus distance from the impurity. This effect is particularly strong for iridium and ruthenium. The phase of the charge oscillation is vastly different from the phase of the spin oscillation in the majority of cases. Investigations performed versus impurity concentration indicate additive effect for the charge and spin density perturbation. Hence, the ferromagnetism is preserved for the moderate impurity concentration.