P-3-21  
Magnetism of PrFeAsO parent compound for iron-based superconductors studied by Mössbauer spectroscopy  
K. Komędera,1 A. Pierzga,1 A. Blachowski,1 K. Ruebenbauer,1 S. Katrych,2 and J. Karpinski2  
1Mössbauer Spectroscopy Laboratory, Pedagogical University, PL-30-084 Kraków, ul. Podchorąży 2, Poland  
2Institute of Condensed Matter Physics, EPFL, CH-1015 Lausanne, Switzerland  
The PrFeAsO was studied by Mössbauer spectroscopy in temperature range 4.2 – 300 K. An itinerant 3d magnetic order develops at about 165 K and it is accompanied by an orthorhombic distortion of the chemical unit cell. A complete longitudinal 3d incommensurate spin density wave (SDW) order develops at about 140 K. A region between above two temperatures is called a “nematic” phase with poorly understood microscopic magnetic properties. Significant part of SDW along propagation direction is almost free of the ordered electronic spins in the “nematic” region. Hence, it is likely that somewhat “mysterious nematic” phase is a region of incoherent spin density wavelets typical for a critical region.

P-3-22  
Controllable transport of surface electrons in a topological-insulator-based magnetic structure  
S. Kudła,1 P. Rzeszutko,1 and V.K. Dugaev1  
1Department of Physics and Medical Engineering, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland  
We discuss the possibility of using a structure with a local magnetization region on top of a topological insulator (TI) to control transport of surface electrons. If the magnetization is oriented perpendicularly to the surface of TI, it opens the gap in the energy spectrum of surface electrons. The structures of this type attracted a lot of attention recently due to the possibility of effective control of magnetization and resistance by the electric current [1]. We consider the cases of one- and two-dimensional motion of electrons. For the 1D case we find similar formulae like presented in [2] for a different choice of the Hamiltonian describing Bi2Se3 TI. We have calculated conductance and thermoelectric coefficient [3]. Both of them reveal some oscillations because the main effect is related to the dependence of transmission on the length of magnetic region.

References:  