ELECTRIC QUADRUPOLE INTERACTION IN CUBIC BCC IRON

A. Błachowski1, K. Komędera1, K. Ruebenbauer1*, G. Cios2, J. Żukrowski2, R. Górnicki3

1Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorąży 2, PL-30-084 Kraków, Poland
2AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków, Poland
3RENON, ul. Gliniana 15/15, PL-30-732 Kraków, Poland

The corresponding author e-mail: sfrueben@cyf-kr.edu.pl

Keywords: cubic ferromagnet, electric field gradient (EFG), Mössbauer spectroscopy

Mössbauer transmission spectra for the 14.41-keV resonant line in \(^{57}\text{Fe}\) have been collected at room temperature by using \(^{57}\text{Co}\)(Rh) commercial source and \(\alpha\)-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the \(\gamma\)-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the \([110]\) crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value \(V_{zz} = +1.61(4) \times 10^{-19} \text{ Vm}^{-2}\) for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the \(^{57}\text{Fe}\) nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the \(^{57}\text{Fe}\) nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline \(\alpha\)-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as \(V_{zz} = +1.92(4) \times 10^{-19} \text{ Vm}^{-2}\). Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin-orbit interaction between effective electronic spin \(S\) and incompletely quenched electronic angular momentum \(L\). It seems as well that the lowest order term proportional to the product \(L \cdot \lambda \cdot S\) dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has \(\lambda = \lambda \cdot 1\) for cubic systems with the symbol \(1\) denoting unit operator and \(\lambda\) being the coupling parameter \([1]\). Figure 1 shows mechanism of the symmetry breaking by the exchange forces leading to the magnetic order.

![Figure 1: Ferromagnetic order transfers electronic charge into equatorial plane of the magnetic moment via the spin-orbit coupling mechanism leading to the emergence of the axially symmetric EFG on the iron nucleus with the principal axis aligned with the hyperfine field \(B\) and the principal component being positive. Ground state in the null external field is shown.](http://arxiv.org/abs/1511.04933)

Figure 1: Ferromagnetic order transfers electronic charge into equatorial plane of the magnetic moment via the spin-orbit coupling mechanism leading to the emergence of the axially symmetric EFG on the iron nucleus with the principal axis aligned with the hyperfine field \(B\) and the principal component being positive. Ground state in the null external field is shown.

Acknowledgments

Dr. Sc. Michael I. Oshtrakkh, Ural State Technical University, Ekaterinburg, Russian Federation is warmly thanked for inspiring this research. This work was partly supported by the National Science Center of Poland, Grant No DEC-2011/03/B/ST3/00446 and by the European Regional Development Fund under the Infrastructure and Environment Programme. Development of the MsAa-4 spectrometer was partly financed by the Polish Ministry of Science and Higher Education under the Grant No R15-002-03.