From Spins to Cooper Pairs: New Physics of the Spins
Topical Conference: 650th Jubilee of the Jagiellonian University

September 22-26, 2014
Zakopane
Magnetism of EuFe$_2$As$_2$-based superconductors studied by 151Eu and 57Fe Mössbauer spectroscopy

K. Komđera1, L. M. Tran2, A. K. Jasek1, A. Blachowski1, K. Ruebenbauer1, J. Żukowski3,4, Z. Bukowski2, and A. J. Zaleski2

1 Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Pl-30-084 Kraków, ul. Podchorążych 2, Poland
2 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, PL-50-422 Wrocław, Poland
3 AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków, Poland
4 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Av. A. Mickiewicza 30, PL-30-059 Kraków, Poland

The EuFe$_2$As$_2$-based superconductors doped with Ca and Co were investigated by means of the 151Eu and 57Fe Mössbauer spectroscopy versus temperature. It was found that spin density wave (SDW) is suppressed by Ca and Co substitution i.e. a magnetic transition temperature is lowered together with the SDW amplitude. Iron spectra exhibit some non-magnetic component in the superconducting region, however traces of SDW survive in the region of superconductivity, so it seems that superconductivity has some filamentary character. Europium orders magnetically regardless of the Co and Ca substitution. Europium moments rotate from the a-axis in the direction of the c-axis (within a-c plane) with increasing amount of dopants. Iron experiences a transferred magnetic field from europium for the substituted material – in the SDW and non-magnetic states both. Europium magnetic order and superconductivity coexist in the same volume.

This work was supported by the National Science Center of Poland, DEC-2011/03/B/ST3/00446.